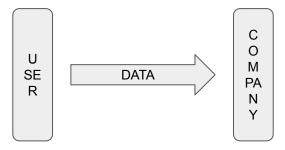
PDS²: Privacy-Preserving Decentralized Data Sharing System

Presentation by Lodovico Giaretta


PDS² is a project by Lodovico Giaretta, Ioannis Savvidis and Thomas Marchioro

Motivation

The Problems of Data Collection

Data Analysis and Machine Learning drive value generation in many sectors

Thus, data collection and exploitation are **fundamental for business** success

For the user:

No **control** over the data

- Can't control when, how or by who it is used 0
- No **privacy** guarantees
- No **reward** for the value generated

For organizations:

Small orgs cannot compete without data

- Legal burdens due to sensitive data
- Infrastructural costs for data analysis

Existing Data Marketplaces (mostly for IoT)

For the user:

Х

No **control** over the data

- Can't control when, how or by who it is used
- No privacy guarantees

Rewards for the value generated

- Often no user-centered design
 - Designed for SMEs as data producers

For organizations:

• Can more easily access any available data

Legal burdens due to sensitive data Infrastructural costs for data analysis

PDS² Properties someone needs to run this! С Ο DATA TASK U Ρ Μ SE D PA S^2 R Ν Y REWARD

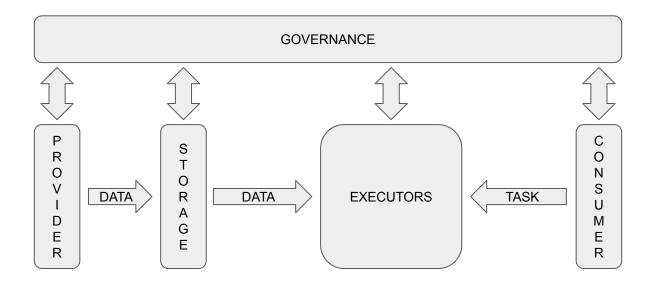
For the user:

- Full control over the data
 - Need explicit permission for each task
- Strong privacy guarantees
 - Organizations do not directly see the raw data
 - **Rewards** for the value generated
 - User-centered design
 - Designed with individual users in mind

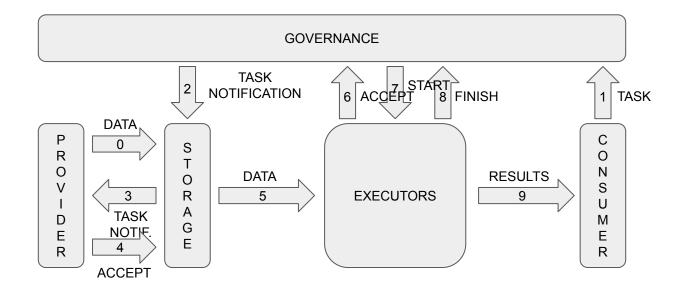
For organizations:

Lower barriers to entry

- Can more easily access any available data
- No legal burdens (no direct data access)


Lower infrastructural costs

- Tasks run remotely in the marketplace
- Strong intellectual properties protections
 - Tasks and results invisible to other players


For the infrastructure maintainers: \checkmark a share of the rewards

PDS² Architecture

General Architecture

Task Workflow

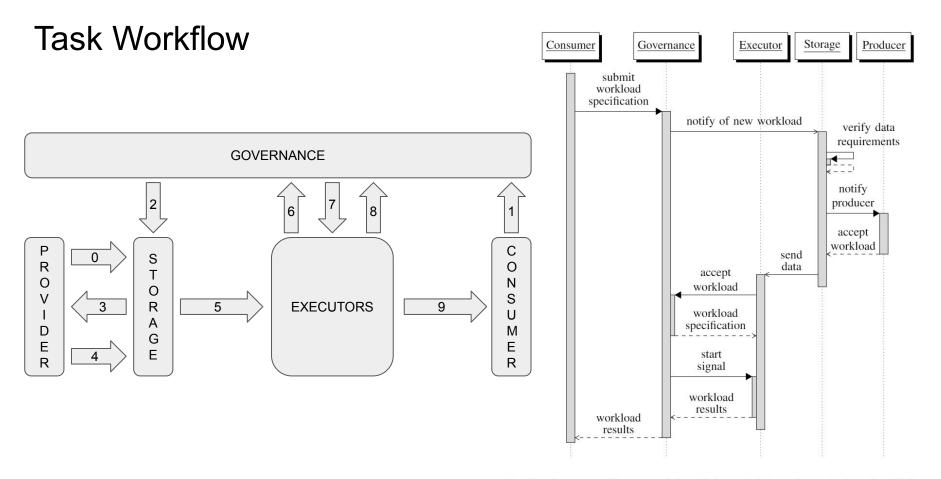
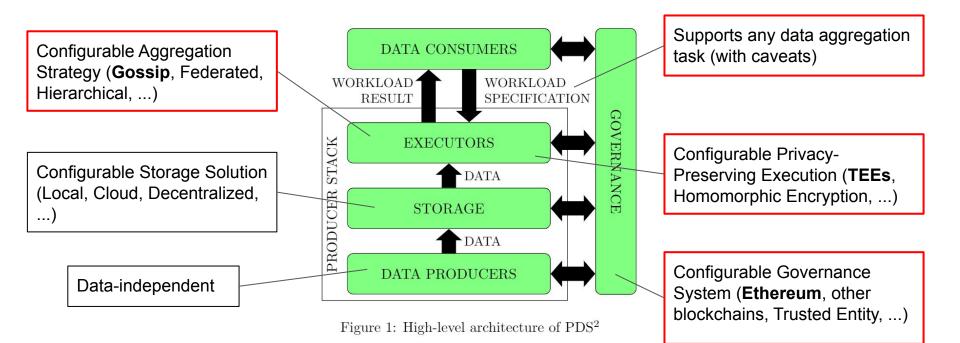
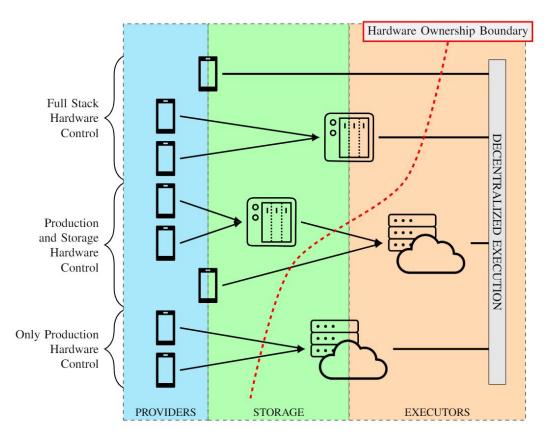




Fig. 2. Sequence diagram of the high-level interactions during the lifetime of a workload in PDS^2 .

Modular Architecture

User-Centered Flexibility

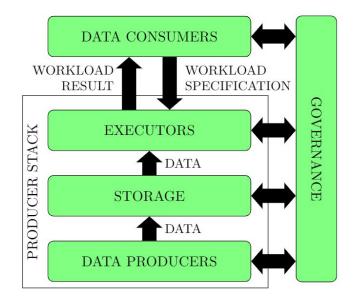


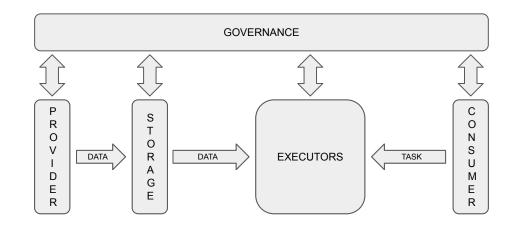
Figure 1: High-level architecture of PDS^2

Building Blocks

Privacy-Preserving Data Processing

Two types of **private information**:

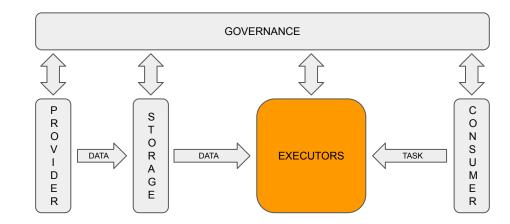
- Providers' data
- Consumers' intellectual properties (e.g. code)


Must be inaccesible to anyone else

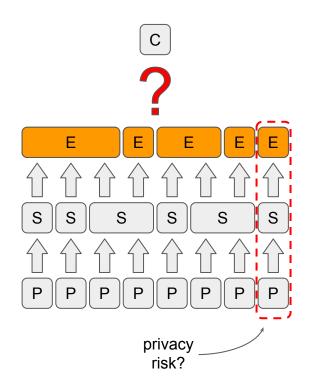
- Including the providers' own storage layer
- Including the executors that run the code

Solution: use encryption!

Problem: how can the executors perform the task, without seeing the code nor the data?


Solution: privacy-preserving data processing!

Trusted Execution Environments


Isolated, tamper-proof hardware black boxes

- Impossible to see what is inside them
 - Even for the owner
- All outside communications are encrypted
- Possible to verify that the correct code is being run
- Just need to trust that the TEE is secure
- Widely available in Intel CPUs (Intel SGX)

TEEs are the most suitable privacy-preserving data computation technique for PDS²

Decentralized Aggregation

Each executor can only compute partial results.

Problem: how do we merge them?

Solution 1: let the consumer do it! (e.g. Federated Learning)

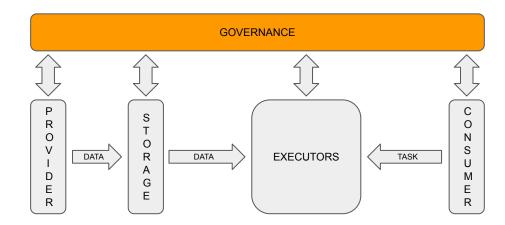
- Scalability issues
- Fairness, transparency, auditability issues
- Privacy issues

Solution 2: decentralized aggregation! (e.g. Gossip Learning)

- Peer-to-peer protocols based on gossip communications
- Efficient usage of all available resources
- Runs on the executors (privacy-preserving data processing)

Gossip-based aggregation is the most suitable technique for PDS²

Blockchain Technology


Natural solution for **decentralized governance**

PDS² requirements:

- Complex smart contracts
 - Manage the workflow of each task
- Non-fungible assets management
 - Unique, indivisible assets
 - E.g. data chunks, code
- Fungible assets management
 - Divisible, indistinguishable assets
 - E.g. currencies, reward tokens

Ethereum provides all of this, along with a vast, mature ecosystem

Open Challenges (1)

Rewarding Schemes

- Same reward for all participants? Reward based on amount of data?
 - Is it fair? Is all data worth the same?
- Reward based on the "added value" of each provider?
 - Computationally expensive; reward not known until the task is finished

Data Authenticity

- Prevent providers from forging fake data (useful for extra rewards!)
 - Possible with cryptographic signatures?
- Prevent users from replicating their data
 - I.e. send multiple copies of the data to different executors, to increase their rewards
 - Preventable with blockchain validation of non-fungible assets?

Open Challenges (2)

Indirect Privacy Leaks

- Certain consumer tasks might leak too much user information (maybe even on purpose!)
 - Static / dynamic task analysis to detect this?
 - Indiscriminately inject noise in the results (i.e. differential privacy)?

Data Discovery and Filtering

- Storage subsystem uses metadata to identify eligible data for each task
- "I want Fitbit data of people running when ambient temperature was less than 5°C"
 - Fine-grained metadata implies privacy leaks
 - Even participation in the task implies privacy leaks!
- Let the executors do the filtering?
 - Computationally expensive; eligibility and rewards not known in advance

Conclusions

PDS² in a Nutshell

A user-centered decentralized data marketplace for privacy-preserving data processing

Not reinventing the wheel: built on existing technologies, bringing together different research areas

Driven by user requirements: evolved from a simple sketch, growing to accomodate all needs

Modular, flexible and extensible: because technologies and needs constantly evolve

Project Status

Current Status:

- High-level architecture and interactions fully defined
- Most suitable technological solutions identified
- Vision paper drafted, to be submitted for peer-review on Jan 25

Future Directions:

- Proof-of-concept implementation
 - Test overall feasibility of the architecture
 - Evaluate different technologies for each component
- Follow-up work on each separate component
 - Modular design allows parallel work on different aspects
 - Each of us will work on a specific component, based on personal expertise and interest
 - Anyone can design additional components or different implementations!

Any Questions?